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Back-End-of-Line and Micro-C4 Thermal
Resistance Contributions to 3-D Stack Packages

Jamil Wakil, Evan G. Colgan, Senior Member, IEEE, and Shaochen Chen

Abstract— The objective of this paper is to understand and
quantify the additional thermal resistance of 3-D stacked pack-
ages due to the back-end-of-line (BEOL) layers and die-to-die
interconnects, specifically micro-C4s. Of particular interest were
the impacts of through silicon vias (TSVs), interfacial thermal
resistances between BEOL material layers, and mechanical
strain. The study revealed that the TSVs could be effective in
reducing overall thermal resistance given an adequately small
pitch, alignment with micro-C4s, and penetration through the
BEOL layers. A review of theoretical and experimental studies by
others revealed vastly different results for the interfacial thermal
resistance between material layers, such as in BEOL layers.
Theoretical studies suggested 1–2 orders of magnitude lower
thermal resistance than experiments. Analysis of the mechanical
strain suggested a difficult to quantify but negligibly small impact
on the thermal resistance of BEOL layers.

Index Terms— 3-D stack packaging, back-end-of-line, interfa-
cial resistance, micro-C4, strain, thermal, through silicon via.

I. INTRODUCTION

MUCH of the previous thermal analysis on back-end-
of-line (BEOL) layers has been focused on the joule

heating in small scale interconnects. The BEOL layers consist
of metal and dielectric interconnect layers between the transis-
tors and C4s. The BEOL layers typically consist of alternating
layers of lines and vias. BEOL layers can number 1 or 2 for
simple designs, and up to 15 or more for large processors.
A new concern that has arisen with the advent of 3-D flip-
chip stack packages is the additional BEOL layers and die–die
interconnect thermal resistances in the primary heat flow path,
as shown in Fig. 1. The figure depicts a worst case thermal
scenario where a high-powered processor is placed below the
memory die which contacts the heat sink. Heat dissipation
and power/signal delivery have conflicting needs in package
design. While it is advantageous to put the processor next
to heat sink to dissipate heat, it is electrically advantageous
to have the processor as close to the package carrier as
possible. This makes power delivery easier and reduces signal
paths while still being able to easily access memory above.

Manuscript received March 30, 2010; revised January 2, 2011; accepted
January 6, 2011. Date of publication June 27, 2011; date of current version
July 20, 2011. Recommended for publication by Associate Editor V. Calmidi
upon evaluation of reviewers’ comments.

J. Wakil and E. G. Colgan are with the IBM Corporation, New York, NY
10504 USA (e-mail: jwakil@us.ibm.com; ecolgan@us.ibm.com).

S. Chen is with the University of Texas at Austin, Austin, TX 78712 USA
(e-mail: shaochen.chen@engr.utexas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2011.2109713

However, in addition to the thermal interface material (TIM)
resistance between the upper die and heat sink, there is now
an additional thermal resistance due to the BEOL layers of the
upper die and interconnects between the dies. For this paper,
the interconnects between the dies are assumed to be micro-
C4s (similar to traditional C4s but typically less than 40 μm
in diameter and 20 μm tall). The overall objective of the study
in this paper is to identify and quantify the subcomponents of
this die–die thermal resistance (Rdd) composed of the BEOL
and micro-C4 layers.

II. BEOL LAYER THRU-PLANE THERMAL RESISTANCE

A previous modeling study by the authors [1] attempted
to quantify the BEOL layer thermal resistance. Four pairs of
BEOL layers were modeled as shown in Fig. 2. The structures
of the interconnect lines and vias were varied, keeping material
properties constant. Eleven different designs were modeled,
the results of which are shown in Table I. The total metal
fraction, as well as the metal fraction for the line and via layers
(individually), is specified. Of particular interest were cases
where the metal fractions were the same but gave different
thermal resistances based on the via/line distribution (i.e.,
A2 and B2). The finite element method (FEM) results were
compared with values obtained using the Maxwell model (1)
and the parallel series approximation (2) [2]
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where � is the volume fraction, k the conductivity, N the
number of line layers, V the number of via layers, and
L the thickness of respective layers. The Maxwell model
constants C0, C1, C2. . . are obtained from fitting the finite
element results and are inherently design-specific, whereas the
parallel/series approximation uses no design information other
than material fractions.

Fig. 3 plots the percent error from the FEM results for the
thermal resistance calculated by the Maxwell model (1) and
the parallel/series approximation (2). The results suggest that
simple averaging schemes without accounting for geometric
details would not be sufficiently accurate representations for
the BEOL layer thermal resistance.

2156–3950/$26.00 © 2011 IEEE
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Fig. 1. Schematic of 3-D stacked flip-chip package with high-powered
processor below memory layer.
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Fig. 2. Four-pair BEOL layers modeled to evaluate effective thermal
resistance of the stack for different geometries and metal fractions. M refers
to metal (line) layer and V to via layer. Reproduced from [1].

III. MICRO-C4 THERMAL RESISTANCE

The micro-C4 joint is similar to the traditional C4 sol-
der joint technology except it is scaled down to meet the
electrical I/O requirements. The joints can be encapsulated
in underfill epoxy for improved cycling reliability. Previous
thermal studies of micro-C4s are limited but include Lloyd
[3] who measured thermal conductivity and diffusivity of lead-
free solder using an iterative inverse method. Szekely [4] used
structure functions for a cylindrical heat propagation scenario
to model solder joint heat propagation.

The ANSYS software was used to model a micro-C4 unit
cell. The objective was to compare the FEM results to a
parallel/series thermal resistance model. The ANSYS model
is shown in Fig. 4. The model consisted of a single solder
joint and the surrounding underfill layer. Also modeled were
5-μm layers with effective conductivities of 15 W/mK in-
plane and 1.0 out of plane, which represented BEOL layer
stacks on prescribed sides of the joints. For the face-to-face
joining condition (in which the active sides of each die would
be facing each other), one BEOL layer stack was modeled on
each side of the joint. For the face-to-back condition (in which
the active side of one die would be attached to the back side
of the other), only one BEOL layer stack was modeled on one
side of the joint. A no-BEOL layer case was also modeled.
One hundred micrometers of silicon was modeled to represent
the die on each side of the joint. The thermal resistance of
the joint was calculated by finding the total thermal resistance
of the structure, and then subtracting the silicon and BEOL
layer contributions. For this particular analysis, highly accurate

TABLE I

THERMAL RESISTANCE OF FOUR-PAIR BEOL LAYERS FOR DIFFERENT

CONFIGURATIONS OF VIAS AND LINES. Idiel = 0.54 W/mK,

Imet = 380 W/mK. FROM [1]

Case Vias Lines/Space Metal fraction: %Via Out of
Desc Total/Line Area Plane

layer/ via layer Resistance

A1 Stacked 0.28/0.28 μm 0.239/.5/.0031 0.31 2.9
Cmm2/W

A2 Stacked 0.28/0.28 μm 0.262/.5/.0625 6.25 1.2

B1 Connected
0.28/0.28 μm 0.239/.5L/.0031 0.31 2.6

staggered

B2 Connected
0.28/0.28 μm 0.262/.5/.0625 6.25 1.3

staggered

C1 Isolated
0.28/0.28 μm 0.239/.5/.0031 0.31 3.6

staggered

C2 Isolated
0.28/0.28 μm 0.262/.5/.0625 6.25 1.8

staggered

D1 Isolated
0.28/1.4 μm 0.081/.167/.0031 0.31 4.9

staggered

E1 No vias 0.28/1.4 μm 0.079/.167/0 NA 5.7

E2 No vias 0.28/0.28 μm 0.239/.5/0 NA 4.1

F1 Stacked
(small 0.28/0.28 μm 0.24/.5/.0069 0.69 2.9
spacing)

F2 Stacked
(small 0.28/0.28 μm 0.24/.5/.0069 0.69 3.0
spacing)
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Fig. 3. Percent error from FEM results for the Maxwell and parallel/series
models.

properties for the surrounding BEOL layer stack and Si were
not so important since only their influence on the micro-C4
layer is investigated. The parallel thermal resistance model was
the single layer version of (2).

Fig. 5 shows plots of the micro-C4 thermal resistance as
a function of (a) the underfill conductivity and (b) the solder
joint conductivity for 100 and 50 μm pitches, respectively,
with different BEOL layer configurations. Also shown are the
no-BEOL-layer case as well as the parallel/series approxima-
tions which obviously do not take into account the surrounding
BEOL layers. The results reveal significant difference between
the face-to-face, face-to-back, and no-BEOL-layers configura-
tions. This is due primarily to the spreading thermal resistance
created by the BEOL layers. The main conclusion is that the
BEOL layers adjacent to the micro-C4 greatly impacts the
results and that independent analysis of the micro-C4 and
BEOL layers is not possible. Subsequent analysis will include
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Fig. 4. Structures modeled (top) ANSYS thermal model of a micro-C4 unit
cell, showing (bottom) one side of the model.

the BEOL layers, underfill, and micro-C4 thermal resistance
together as Rdd (die–die thermal resistance).

IV. IMPACT OF THRU SILICON VIAS (TSVS)

An important design feature that affects BEOL layer and
micro-C4 thermal resistance is the TSV. TSVs are designed for
power delivery or signal I/O and can penetrate one or more lay-
ers of the BEOL, as shown in Fig. 6. The goal of this section is
to determine the impact of the TSV on the thermal resistance
of the BEOL layers and micro-C4 layers. As concluded from
the previous section, micro-C4 thermal resistance is strongly
dependent on the adjacent BEOL layer thermal resistance, and
therefore the two features cannot be analyzed separately. The
TSVs analyzed in this paper are 20-μm diameter Cu cylinders.
Two categories of TSVs exist in industry: fine pitch die-to-
die and coarse pitch die-to-ball. These have fundamentally
different requirements, manufacturing processes, and mini-
mum pitches. The geometry analyzed in this paper would
represent somewhat of an intermediate case between fine and
coarse pitch, but more representative of the coarse pitch,
especially when aligned with the micro-C4s. The International
Technology Roadmap for Semiconductors predicts minimum
pitches for coarse pitch TSVs to be ∼80 μm by 2015 [5].

A simple four-layer BEOL with micro-C4 layer was mod-
eled in ANSYS, as shown in Fig. 7. The model was used to
compare the four-layer BEOL with TSVs penetrating various
numbers of layers and aligned with the miroC4 versus non-
aligned. Additional Si layers were modeled, on which heat
source and heat sink boundary conditions were applied. The
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Fig. 5. Micro-C4 thermal resistance as a function of (a) underfill conductivity
and (b) solder conductivity for different micro-C4 pitches and BEOL layer
configurations.

TSV

Micro-C4

BEOL Layer
STACK

Fig. 6. Example die stack with micro-C4 and TSV penetrating a portion of
the BEOL layer stack.

thermal resistance of these silicon layers was subtracted from
the total to get the BEOL + micro-C4 composite thermal
resistance Rdd . The geometry would represent a face-to-back
design as described in the previous section.

Fig. 8 shows Rdd as a function of the TSV pitch. The micro-
C4s are assumed 14 μm tall, 18 μm in diameter, with an
underfill conductivity of 1 W/mK. The TSVs are assumed
to be not directly aligned with the micro-C4s. The legend
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Fig. 7. BEOL layers and micro-C4 model used to evaluate the effect of
TSVs.
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Fig. 8. BEOL layers + micro-C4 thermal resistance (Rdd ) as a function
of TSV pitch for TSVs not aligned with the micro-C4. Micro-C4 solder
conductivity is assumed 36 W/mK, and the TSV conductivity is assumed
380 W/mK.

designates the size of lines/spaces modeled and the number of
layers the TSV penetrates. Fat-1L designates fat layers with
one layer of TSV penetration. The table above the plot shows
the dimensions used for fat and thin layers. The dots indicate
the infinite TSV pitch (no TSVs). The first observation from
Fig. 8 is that the TSV pitch primarily affects the larger fat
layers. The second observation is that, beyond ∼150 μm pitch,
the TSVs become basically ineffective in providing thermal
enhancement.

Fig. 9 shows Rdd as a function of the dielectric thermal
conductivity with fat layers, of 200 μm TSV pitch, 14 μm
micro-C4 height, and 1 W/mK underfill conductivity. The
TSVs are nonaligned with the micro-C4s. The three curves
compare TSV through all four layers, 5% area of micro-
vias connecting the layers, and no TSV or vias. The main
conclusion is that 5% micro-vias without TSVs is significantly
better than having TSVs at this large pitch. It must be noted
that the TSV at 200 μm pitch equates to less than 1% Cu.
The second observation is that the dielectric conductivity in
this range has minimal effect on the structures with 5% vias.

Figs. 10 and 11 compare aligned versus non-aligned TSVs
for two and four layer TSV penetrations, for 200 and
30 μm TSV pitches, respectively. The main observation is
that the four-layer penetration aligned (with micro-C4) TSV
is the only significantly different result. At the larger pitch,
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Fig. 9. BEOL Layers + micro-C4 thermal resistance (Rdd ) as a function of
dielectric conductivity for 200-μm TSV pitch, with 14-μm tall micro-C4s and
an underfill conductivity of 1W/mK. Micro-C4 solder conductivity is assumed
36 W/mK, and TSV and micro-via conductivity is assumed 380 W/mK.
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Fig. 10. BEOL layers + micro-C4 thermal resistance (Rdd ) as a function
of dielectric conductivity for 200 μm TSV pitch, with 14-μm tall micro-C4s
and an underfill conductivity of 1 W/mK. Micro-C4 solder conductivity is
assumed 36 W/mK and metal/TSV conductivity is assumed 380 W/mK.
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Fig. 11. BEOL Layer + micro-C4 thermal resistance (Rdd ) as a function
of dielectric conductivity for 30 μm TSV pitch, with 14-μm tall micro-C4s
and an underfill conductivity of 1 W/mK. Micro-C4 solder conductivity is
assumed 36 W/mK and metal/TSV conductivity is assumed 380W/mK.

all the non-fully-penetrated TSV cases are approximately the
same regardless of the TSV alignment. The difference is more
obvious for the smaller pitch of Fig. 11. Here, one can see
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R
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Fig. 12. 2-D test vehicle and cross section of 3-D stack test vehicle used to
extract Rdd for 70-μm tall C4s, 200 μm pitch with underfill.

TABLE II

MEASUREMENTS OF THETA-jc (LOWER DIE CENTER SENSOR TO LID

TOP) AND Rdd CORRELATED WITH ANSYS MODEL FOR THE 3-D STACK

TEST VEHICLE SHOWN IN FIG. 12

Measured TIM1 resistance Rdd extracted
theta-jc extracted from assuming same

package model TIM1 resistance
as the 2-D Pkg.

2-D Test 19 C mm2/W 12 C mm2/W
vehicle

3-D Stack 102 C mm2/W 95 C mm2/W
test vehicle

that the ranking of lowest to highest thermal resistance is:
1) four-layer penetrated aligned TSV; 2) two-layer aligned;
3) four-layer nonaligned; and 4) two-layer nonaligned.

Measurement results on a stacked test vehicle containing
two die, with an interface consisting of 200-μm pitch 70-μm
tall underfilled C4 joints were used as a rough validation of
Figs. 8–11. Fig. 12 shows the test vehicle and cross section, re-
vealing the die stack. The BEOL stack of the top die consisted
of five layers. The lower die contained heaters and sensors
which could be powered to measure temperatures on the lower
die, and a thermocouple was used to measure the lid temper-
ature. The upper die in the 3-D stack TV was not electrically
connected but merely attached without reflowing the C4s using
conventional underfill. By measuring the two die stack theta-
jc (chip center sensor to lid thermal resistance) and using an
ANSYS conduction model of the package, it was possible to
extract the TIM thermal resistance. Cross sections revealed
roughly equivalent bond lines for the 2-D and 3-D stack test
vehicles. Therefore, assuming the same TIM thermal resistance
as the 2-D package, and using the measured 3-D stack theta-
jc, it was possible to extract Rdd for the 3-D stack using the
package model. The results revealed Rdd = ∼95 C mm2/W.
Table II summarizes the measurements of theta-jc and model
extraction of Rdd . Since Figs. 8–11 assumed 14-μm tall
micro-C4s, and most of the resistance would be the micro-

IE-6

IE-7

IE-8

IE-9

IE-10
1 10

Ratio of average sound velocity

20

In
te

rf
ac

ia
l t

he
rm

al
 r

es
is

ta
nc

e 
(R

/K
m

2 
· W

−1
)

Fig. 13. Interfacial thermal resistance as a function of the ratio of
average sound velocities for various material pairs. Reprinted with permission
from [8].

C4 layer, a linear extrapolation of the 70-μm tall measured
results to 14 μm would result in Rdd ∼ 19 C mm2/W. This
is certainly consistent with the range of values shown in
Figs. 8 and 9, for no TSV (or very large pitch), with underfill
and dielectric conductivities in the ranges indicated in the
figures. A direct validation of the unit cell model used for
Figs. 8–11 is not possible due to the unknown underfill and
C4 thermal conductivities in the test vehicle form factor. As
stated previously, the purpose of the measurement comparison
was more to serve as a sanity check.

V. INTERFACIAL THERMAL RESISTANCE CONTRIBUTION

Implicit in the previous sections was that the interfacial
thermal resistance between the material layers was negligibly
small. Significant work has been conducted to analyze the
thermal resistance at the interface of dissimilar materials. Nan
[6] looked at SiC composites with whiskers and measured
total effective thermal resistance, from which the individual
resistance components were back-calculated. The interfacial
thermal resistance component was found to be roughly 0.001
to 0.1 C mm2/W. Molecular-dynamics-based studies include
those of Yang [7], who used a coupled molecular dynam-
ics/FEM to model the interfacial and continuum characteristics
at an interface. Wang [8] used the diffuse mismatch model
(DMM) to look at 1250 different material interfaces. The
results ranged from 0.001 to 0.1 C mm2/W for most cases. The
thermal resistances correlated with the ratios of average sound
velocities within the materials. Fig. 13 plots the interfacial
thermal resistances as a function of the ratio of average
sound velocities. It must be noted that the DMM is a rough
approximation and in fact not valid for interfaces between very
similar materials.

We attempted to use the relationship developed by Wang to
estimate the interface thermal resistance of typical BEOL layer
material pairs. The results are shown in Fig. 14. The left axis
shows the ratio of sound velocities for the material pairs, and
the right axis shows the interface thermal resistance (Rint) us-
ing the sound velocity ratio relationship. The sound velocities
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Ratio of Sound Velocities and Interfacial Resistance of BEOL 
Layer Materials Based on DMM
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Fig. 14. Ratio of sound velocities (left axis) and interface thermal resistance
(right axis) for common BEOL layer material pairs estimated using the Rint-
to-sound velocity ratio relationship of Wang [8].

TABLE III

NUMBER OF INTERFACES AND INTERFACE THERMAL RESISTANCES PER

INTERFACE FOR A TYPICAL 90-nm BEOL STACK

Interfaces # Interfs.
Rint per
interface (C mm2/W)

TEOS-Nblok 6 0.001156

OMCTS-SICOH 1 0.001563

TEOS-SiNx 1 0.001569

NBlok-SiO2 4 0.001592

SiO2/TEOS 1 0.002089

SiCOH-SiO2 4 0.00261

SiCOH-ULK 7 0.002783

Nblok-SiCOH 1 0.004715

Nblok-OMCTS 1 0.008365

Nblok-ULK 7 0.014891

Total thermal resistance ∼0.17

were calculated as follows:

υavg = υL + 2υT

3

υL =
√

C11

ρ
, υT =

√
C44

ρ
(3)

where C11, C44, and ρ are the Young’s modulus, shear modu-
lus, and density of the material, respectively. Modulus and den-
sities of most of the BEOL materials were measured directly or
estimated from representative material compositions at IBM.
(Different variations of some of the materials exist, but proper-
ties are in general similar among families.) Generic properties
were used for Si and SiO2 as obtained from the literature. As
can be observed from Fig. 13, the uncertainty can be as high
as an order of magnitude for the lower sound velocity ratios.

Table III shows the numbers of such interfaces in a typical
IBM BEOL layer stack and the value of the total interfacial
thermal resistance contribution of a stack in a sub-90-nm
generation microelectronic technology. The number of inter-
faces and estimated thermal resistance per interface are shown.
As can be seen, the total theoretical interfacial contribution
(∼0.17 C mm2/W) is quite small relative to the thermal
resistance numbers discussed in the previous sections.

k ~ 2.3 W/mK, Rint ~ 2.3 Cmm2/W
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Fig. 15. Interfacial thermal resistances extrapolated from resistance versus
film thickness for SiO2 and Si3N4 on Si. Data from [9].

TABLE IV

INTERFACE THERMAL RESISTANCE BETWEEN METAL AND SiO2

CALCULATED USING TWO FLUID MODEL AND MEASUREMENTS. DATA

FROM [10]

Metal–SiO2 Two-fluid
Measurement C mm2/W

interface model C mm2/W

Cr 7.1 × 10−4 2.4 × 10−2

Ti 3.9 × 10−4 3.4 × 10−2

Al 1.3 × 10−3 3.5 × 10−2

Ni 8.1 × 10−4 3.5 × 10−2

Pt 1.6 × 10−3 3.8 × 10−2

Another method to estimate the interfacial thermal resis-
tance is to extrapolate the resistance versus film thickness
measurements as was done by Lambropoulos [9], who summa-
rized the extensive work of thermal conductivity measurements
of thin films. Fig. 15 shows the thermal conductivity of
oxide films as a function of thickness, summarized from
other sources by Lambropoulos [9]. The interfacial thermal
resistances are quite large for SiO2 to Si and Si3N4 to Si
(>2 C mm2/W). These values are more than two orders of
magnitude larger than those shown in Fig. 14 based on the
DMM methodology.

The metal dielectric interface was analyzed by Chien [10],
who used a sandwich structure of different metal layers
between two dielectric oxide layers and compared measured
thermal resistance to phonon/electron nonequilibrium based
theoretical results. The interfacial thermal resistances extracted
were about an order of magnitude higher than those predicted
by the two-fluid model

RSi O2−m =
(

δ

ke + k p

) (
ke

k p

) [
e

L
δ − 1

e
L
δ + 1

]
(4)

where L is thickness of metal layer

δ =
√

kek p

G(ke + k p)

G is the electron–phonon coupling factor;
ke is related by Wiedemann–Franz law;
k p = Cvl/3;
C is the phonon specific heat from Dulogn–Petit law;
l is the phonon mean free path assumed to be 2X lattice

constant;
v is the sound velocity.
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Fig. 16. Effect of strain on thermal conductivity of a Lennard–Jones solid.
Both hydrostatic (lines) and in-plane strain components are shown. Reprinted
with permission from [12].

The modeled and measured results are summarized in the
Table IV.

Chien explained the model/measurement discrepancies as
due to imperfections at the interfaces, such as voiding. Prasher
[11] attempted to relate the higher interface thermal resistance
due to imperfections to the materials’ adhesion energy.

In summary, the review of prior work on the interfacial ther-
mal resistance between dissimilar materials reveals significant
disparity between theoretical and experimental results, which
can only be explained by the imperfections at the interface.
The comparison of Rdd extracted from the 3-D stack test
vehicle suggests that the imperfections in actual BEOL layer
stacks might not be as alarmingly high as the measurements
by Lambropoulos and Chien might suggest.

VI. STRAIN EFFECT

Another factor seldom considered in calculation of the over-
all thermal resistance is the impact of strain. Picu [12] used a
monatomic Lennard-Jones solid assumption and a molecular
dynamics simulation to calculate the thermal conductivity of
the solid under plane strain and plane stress conditions. He
found that plane strain condition affected thermal conductivity,
but plane stress had a negligible impact. Hydrostatic strain had
the largest impact. The results of the plane strain and hydrosta-
tic strain are shown in Fig. 16. The effects are due to change of
phonon group velocities and mean free paths resulting from the
strains. The plane strain condition actually makes the thermal
conductivity anisotropic. Assuming less than 2% strains, and
linearizing their findings, one can conclude that the strained
to unstrained thermal conductivity ratio is

k

ko
� [1 − 0.21(%ε)] (5)

which is in an averaged isotropic value (between the hydro-
static and plane strain conditions).

SiCOH

Approx
% Strain

1%

0.2%

−0.01%

SiO
2

NBlok
TEOS

Si
3
N

4
Si

Fig. 17. ANSYS model of BEOL layer material stack on Si and re-
sulting max. principal strains due only to thermal loading due to the
deposition processes. Assumed coefficients of thermal expansion (CTEs)
(ppm/°C) NBlok = 3, Si = 2.6, SiCOH = 12, SiN = 3, SiO2 = 12,
and TEOS = 0.6.

Bhowmick [13] explained the strain dependence of thermal
conductivity as manifested in the group velocity (speed of
sound) and relaxation time. However, the only strain con-
dition analyzed was hydrostatic strain. In this paper, the
phonon frequency was related to strains and, compared with
a molecular dynamics simulation, showed good comparison.
The relaxation time was related to temperature and strain
as follows:

τ ∼ 1

T
ε−γ (6)

where γ is a material constant. The relationship of group
velocity to strain was approximately

k

ko
� [1 − 0.20(%ε)] (7)

which is fairly close to that extracted from Picu (5). Using the
above relationship, we tried to find the impact of strain on the
thermal conductivities of typical BEOL layer materials. As a
test case, the strains developed in a six-layer stack shown in
Fig. 17, arising purely from the CTE mismatch and thermal
loading from deposition temperatures, were analyzed using
ANSYS. The average CTE values measured at IBM were
used for most dielectric materials, and from the literature for
SiO2 and Si. In an actual BEOL structure, the strain fields
would be much more complicated due to the metal lines, vias,
and package influences. It is obvious from Fig. 17 that there
would be some layers in tension and others in compression.
For 1% tensile strain in the SiO2 layer, as shown in Fig. 17,
the value of k/k0 would be ∼0.8. However, the majority of the
layers are either in compression or unstrained. It is therefore
argued that, while design-dependent, the net effect of the strain
on thermal resistance of the BEOL is likely to be negligi-
ble over a large area. However, localized regions could be
affected.

VII. SUMMARY AND CONCLUSION

The primary objectives of this paper were to quantify the
added thermal resistance (Rdd) due to the BEOL and micro-
C4 layers for 3-D stacked packages and identify the major and
minor contributions. Rdd values on the order of or larger than
the total 2-D package thermal resistances for today’s high-
powered applications imply significant cooling challenges for
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two or more die-layer stacks. The study revealed the micro-C4
interconnects are significantly impacted by the adjacent BEOL
layer thermal resistance and could not be analyzed separately
due to the spreading and interaction effects. Analysis of
TSVs revealed that only for pitches below ∼150 μm and for
TSVs directly aligned with micro-C4s and which penetrate
a significant portion of the BEOL layers would there be
significant impact on Rdd . The interfacial thermal resistance of
BEOL materials was evaluated based on the work of others,
and revealed vastly different conclusions for theoretical and
experimental analysis. The disparity is believed to be due
to imperfections at the interfaces. The impact of strain on
the thermal resistance of BEOL layers was analyzed and
suggested to have a difficult-to-quantify but negligibly small
impact over large areas, and possibly more of a concern for
local regions.
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