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Abstract

Implantable polymeric hydrogels loaded with immunostimulatory cowpea mosaic virus (CPMV) were

fabricated using digital light processing (DLP) printing technology. The CPMV-laden hydrogels were

surgically implanted into the peritoneal cavity to serve as depots for cancer slow-release immunotherapy.

Sustained release of CPMV within the intraperitoneal space alleviates the need for repeated dosing and we

demonstrated efficacy against ovarian cancer in a metastatic mouse model.
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Serous ovarian cancer is a deadly malignancy for women, and about 80% of patients are diagnosed at

advanced stages with metastatic disease in the peritoneal space.  Standard care for women with ovarian

cancer is surgical debulking followed by platinum-based chemotherapy. Although these treatments can

provide a short period of remission, up to 70% of patients experience recurrence.  Despite the advances

of immunotherapy for cancer treatment, there is no established immunotherapy for ovarian cancer. There

is a dire need for therapeutic innovation and development of treatment strategies that prolong survival

and prevent recurrence. Immunotherapy is an undeveloped therapeutic option for this disease.

Cancer immunotherapy is fundamentally different from and has multiple advantages over cytotoxic

chemotherapy. Immunotherapy empowers the patient's own immune system to recognize and eliminate

tumors and metastasis and when anti-tumor immune memory is established, treatment responses can be

durable preventing recurrence. Using mouse models of aggressive metastatic ovarian cancer, we have

previously reported that the plant virus, cowpea mosaic virus (CPMV), is a potent cancer immunotherapy

that generates durable anti-tumor immune responses against ovarian cancer. Weekly intraperitoneal (i.p.)

dosing of immunomodulatory CPMV nanoparticles effectively reprograms the ovarian tumor

microenvironment (TME) within the i.p. space, leading to survival benefit with inhibited tumor growth,

extended survival, and protection demonstrated by re-challenge experiments.  The potent efficacy of

CPMV has been established in various solid tumor types including in canine patients with spontaneous

tumors.  Mechanism studies demonstrate that CPMV is a toll-like receptor agonist of TLR2, 4, and 7 and

this initially stimulates and recruits immune stimulatory innate immune cells to the tumor sites. Tumor cell

killing is mediated by these innate immune cells, which then become antigen-presenting cells to establish

adaptive and systemic anti-tumor immunity.  To achieve this potency and effectively overcome the

immunosuppressed TME, repeated i.p. injections are required. However, this bears a translational barrier

because i.p. administration in humans is a complex procedure and requires hospitalization that increases

cost and decreases quality of life;  repeated i.p. dosing will be challenging to implement in any clinical

treatment plan. To overcome this technological barrier, we turned toward the formulation of CPMV
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hydrogels to form an intraperitoneal depot that mediates sustained release, thus alleviating the need for

repeated dosing. Given that women with ovarian cancer almost always require surgeries to remove tumor

tissues, such a CPMV hydrogel biomedical device could be readily implanted post-surgical debulking along

with CPMV priming. Therefore, no future surgical operation will be needed.

Various slow-release formulations have been developed, such as hydrogels for vaccine or chemotherapy

delivery,  as well as microparticle depots or microneedle patches for immunotherapy/antibody

delivery.  In a previous study we turned toward a CPMV-dendrimer self-assembly strategy to form i.p.

CPMV depots and showed that the CPMV-dendrimer co-assemblies served as slow-release CPMV

formulation and achieved improved efficacy against ovarian cancer after a single treatment.  While

efficacious in the tumor mouse model, translation may be hampered due to toxicity of the dendrimer

formulations;  another hurdle is that the formulation relied on self-assembly primed by electrostatic

interactions leading to nanoscale aggregates with ill-defined size control.

3D bioprinting is an additive manufacturing strategy for the fabrication of bio-constructs. To date,

extrusion-, inkjet-, and light- based 3D bioprinting strategies have been developed to print constructs with

live cells, biomaterials, or biological molecules, which constitute bioinks. Extrusion-based and inkjet-based

bioprinting feature the precise deposition of the bioink with defined placement and pattern.  Light-

based printing, featuring digital light processing (DLP) printing, uses light to selectively initiate bioink

photopolymerization in a vat, enabling layer-by-layer construction with fine control over the geometry of

the structure.  Compared to extrusion- and inkjet-based bioprinting, DLP printing exhibits significant

advantages in printing speed, making it promising for large-scale manufacturing.  DLP printing is also

less dependent than extrusion printing or inkjet printing on specific rheological properties of the

bioinks.  Additionally, DLP printing offers excellent printing resolution, achieving details up to micron-

scale.  Overall, the DLP bioprinting technology will not only enable us to formulate biodegradable and

biosafe 3D depot but also offer us more engineering space to incorporate various antigens and adjuvants in

our future cancer immunotherapy development.

In this work we sought to explore the feasibility of using DLP  printing technology to fabricate

biocompatible polymeric CPMV-laden hydrogels of defined size and geometry ( Fig. 1A ), to establish this

platform for future development of more complex systems. First, CPMV was propagated in black eyed peas

and purified as previously described.  Then, CPMV was mixed with a defined concentration of gelatin

methacrylate (GelMA, 4% w/v) and Polyethylene glycol diacrylate (PEGDA, 0.1% w/v) to prepare a bioink,

which was then exposed to 405 nm light for 30 s (light intensity = 79.4 mW cm ) to achieve polymerization

and hydrogel formation. Hydrogels of 9.5 mm × 6 mm × 3.2 mm in a slab geometry were bioprinted

containing 900 μg CPMV. The polymerization process and blending of CPMV were characterized by Fourier-

transform infrared spectroscopy (FTIR). Acrylate polymerization was effectively initiated for both CPMV

laden-hydrogel and sham hydrogel with no CPMV during the DLP printing process, as validated by the
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pronounced drop in transmittance at 1640 cm  ( Fig. 1B ). Upon the incorporation of CPMV, a group of

subtle absorbance signals were noted around ∼3000 cm . However, the spectrum did not display any

characteristic absorbance indicative of covalent or non-covalent bonding. This suggests that CPMV was

incorporated into the hydrogel through simple blending, which led to a diffusion-based release

mechanism. The microarchitecture was examined by scanning electron microscopic (SEM) imaging of the

lyophilized samples. A porous hydrogel architecture stemming from, and characteristic for, the polymeric

network of GelMA and PEGDA was observed ( Fig. 1C ). A consistent pore size distribution was observed in

both samples; data suggest that CPMV did not disrupt the polymerization. Mechanical testing further

corroborated this, as sham and CPMV-laden hydrogels exhibited comparable Young's moduli (Sham gel:

6531 ± 628.0 Pa, CPMV gel: 6117 ± 2670 Pa, p = 0.8065) ( Fig. 1D ). In vitro release of the bioprinted CPMV in

PBS was evaluated by ELISA.  ∼30% of CPMV was released by day 1, and ∼50% of CPMV was released by

day 3. The release then continued slowly to day 14 when it reached a plateau of ∼60%, which followed the

pattern of Fick's diffusion  ( Fig. 1E ).

Fig. 1  Bioprinting and characterization of CPMV implants. (A) Schematic diagram of the digital light processing (DLP)

bioprinting approach. Characterization of empty gel (Sham) and CPMV loaded implants using (B) FTIR spectroscopy, (C)

SEM, and (D) Young's modulus (statistical analysis was calculated by unpaired T test) (D). (E) In vitro releasing profile of

printed CPMV.

To evaluate the sustained release of CPMV within the i.p. space, we generated hydrogels incorporating Cy5-

labeled CPMV (CPMV-Cy5). Each CPMV particle offers 300 surface-exposed lysine residues suitable for

bioconjugation using N-hydroxysuccinimide (NHS) chemistry.  To synthesize CPMV-Cy5, CPMV was

reacted with sulfo-Cy5-NHS ester using previously established protocol.  As demonstrated by the

denaturing gel electrophoresis (NuPAGE), Cy5 signal co-migrated with the CPMV coat proteins,

demonstrating the successful conjugation of Cy5 to CPMV (Fig. S1A, ESI† ). UV-Vis spectrophotometry

analysis determined that ∼78 Cy5 molecules were conjugated per CPMV (Fig. S1A, ESI† ). Transmission

electron microscopy confirmed that CPMV-Cy5 remained intact and structural sound similar to

unconjugated CPMV (Fig. S1C, ESI† ). Subsequently, we loaded 600 μg of CPMV-Cy5 into two distinct

hydrogel formulations: one comprising 5% GelMA + 0.2% PEGDA and the other containing 4% GelMA + 0.1%

PEGDA. This allowed us to investigate whether the in vivo release of CPMV could be modulated by the

formulation; 600 μg soluble CPMV-Cy5 was i.p. injected as a control. To validate that the CPMV-laden

hydrogels formed a depot for sustained CPMV release in vivo, CPMV-Cy5-loaded hydrogels were surgically

implanted into the i.p. space of BALB/c mice, and Cy5 fluorescence was continuously monitored and
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recorded for a duration of 30 days. The two formulations are designed to provide different kinetics of

release – a higher GelMA and PEGDA concentration created a denser polymeric network to sustain the

diffusion of CPMV and lead to a slower release.  PEGDA increases the stiffness of the implant and

therefore improves its handleability. The formulation with 0.1% PEDGA is softer and therefore more

compatible to the mechanical environment of the peritoneal although it required more skillful handling for

the implantation. Upon surgical administration of the CPMV-laden hydrogels and i.p. injection of CPMV-

Cy5, the Cy5 fluorescence signal within the i.p. space was monitored by IVIS imaging ( Fig. 2A ). Quantitative

analysis showed an initial decrease followed by a gradual increase in fluorescence intensity for both

hydrogel formulations – this fluctuation can be explained by initial fluorescence quenching.  At day 15

post administration, maximum fluorescence intensity was achieved for both hydrogels, then the

fluorescence signals declined gradually for 30 days post administration, which indicated the sustained

release of CPMV in the i.p. space ( Fig. 2B ). In comparison, the soluble CPMV-Cy5 showed early increasing of

Cy5 fluorescence with peaking around day 7 and faster decay over time. Overall, no major differences in

the release profiles were noted comparing the two hydrogel formulations; therefore, we proceeded with

4% GelMA + 0.1% PEGDA for efficacy testing.

Fig. 2  Release of CPMV in the intraperitoneal space. (A) Fluorescence imaging of BALB/c mice post-surgical

implantation of CPMV-Cy5 hydrogels on days 0, 14, and 27. (B) Quantified fluorescent intensity in the intraperitoneal space

over time.

Next, we assessed the efficacy of the CPMV slow-release hydrogel using a mouse model of ovarian cancer,

ID8-Defb29/Vegf-a-Luc ovarian tumors, disseminated in the peritoneal cavity of C57BL/6J mice.  To

mimic the remission stage and application of the implant post-surgery, we first surgically implanted

hydrogels containing 900 μg of CPMV into the i.p. space on day −3 prior to tumor challenge. In addition, we

administered a single dose of soluble CPMV (100 μg in 200 μL of PBS, i.p.). The addition of soluble CPMV is

to kick-start the immunostimulation and avoid delayed responses due to slow-release of CPMV from the

hydrogel (n = 9). The slow-release hydrogel group was compared to: (1) soluble 1 mg dose of CPMV (i.p.

administration, n = 9), (2) weekly administration of 100 μg-doses of CPMV (in 200 μL of PBS, weekly for 6

weeks, n = 10). PBS (n = 8) and sham gel (n = 9) were included as controls ( Fig. 3A ). On day 0, mice were

challenged with 5 × 10  ID8-Defb29/Vegf-a-Luc cells administered i.p. Tumor progression was monitored

closely by tracking changes in body weight (Fig. S2A and B, ESI† ) and increases in body circumference

( Fig. 3B and C ) due to tumor burden and ascites. On day 50, all groups received one additional dose of 100

μg soluble CPMV via i.p. injection to further improve treatment efficacy. The study concluded on day 80
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when all remaining mice were free of tumors. Mice were euthanized if ascites and tumor growth caused

body weight to exceed 35 g or their abdominal circumference exceeded 9 cm.

Fig. 3  Treatment efficacy of CPMV hydrogels. (A) Treatment and tumor injection schedule. The groups are PBS (n =

8), Sham hydrogel (n = 9), CPMV hydrogel (900 μg + 100 μg soluble CPMV) (n =9), bolus treatment (1 mg CPMV) (n = 9), and

weekly CPMV dosing using 100 μg (n = 10). (B) Individual circumferences in each group. (C) Average body circumferences

for all treatment groups. Data points are cut off when n < 5 for the treatment group. (D) Survival rates for all treatment

groups. Statistical significance in (C) was calculated by two-way ANOVA (**p < 0.01, ***p < 0.001, ****p < 0.0001). Statistical

significance in (D) was calculated using the log-rank (Mantel–Cox) test (**p < 0.01, ****p < 0.0001).

The weekly dosing of 100 μg CPMV is the established ‘standard dose’ for the ID8-Defb29/Vegf-a-Luc i.p.

ovarian cancer model in C57BL/6J mice’,  consistent with our prior work.  This repeated dosing of

CPMV indeed showed potent efficacy controlling tumor growth and leading to survival benefits ( Fig. 3B–

D ). Also, the surgically implanted CPMV hydrogels primed potent efficacy against the ovarian tumors and

appeared slightly more potent in terms of controlling tumor growth and survival rate ( Fig. 3B–D ). Lastly,

the 1 mg bolus-dose of CPMV also delayed onset of tumor growth, however with lesser efficacy compared

to the sustained-release or repeated dosing groups. This underscores the potent anti-tumor efficacy of

CPMV. Conversely, the sham hydrogel group or PBS control groups had no discernible effects on tumor

growth. While statistical significance was not reached, sustained release CPMV hydrogel treatment trended

toward being the most potent formulation as demonstrated by improved controlling of tumor growth ( Fig.

3B and C ) and enhanced overall survival rates (33.3%, 3/9 mice) in comparison to repetitive dosing (30%,

3/10) and bolus dosing (22.2%, 2/9) ( Fig. 3D ). Further analysis revealed that CPMV gel implantation

extended median survival to 66 days, compared to 60 days with repetitive CPMV dosing and 52 days with a

single large CPMV dose. In contrast, both PBS and Sham gel controls had a median survival of 44 days. It

was noted that the single bolus CPMV dose of 1 mg, resulted in five mice displaying potential autoimmune

symptoms, such as fur loss and white hair growth. From a clinical perspective, CPMV hydrogel implants not

only prevent overdosing and excessive immune system overstimulation but also ensure efficacy with a

broader remission period for patients to receive additional treatments. This approach can also reduce

costs associated with repetitive dosing and hospitalization, ultimately leading to an improved quality of

life.

In conclusion, we successfully developed a sustained-release hydrogel formulation of CPMV using state-

of-the art DLP printing technology. Sustained release of the active ingredient, CPMV, was confirmed

through in vitro and longitudinal imaging studies in live animals. More importantly, through surgical
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implantation, the CPMV-laden hydrogels proved potent and efficacious against murine ovarian cancer – on

par with our standard weekly dosing regimen. From a clinical perspective, CPMV hydrogel implantation

offers several advantages over the traditional dosing methods by avoiding repetitive intraperitoneal

injection with associated patient stress, potential for problems and increased costs with hospitalization.

Less need for repetitive clinical intervention will enhance quality of life for patients, and the slow release

potentially would reduce risk of immune-related adverse events. Throughout this study, the hydrogels

served as scaffolds for CPMV delivery. In our forthcoming research, we aim to enhance treatment efficacy

for ovarian cancer by incorporating additional immunoadjuvants or tumor-specific antigens. Overall, this

work lays the groundwork for the future translation of CPMV as a treatment option for human patients in

clinical settings.
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