Now, liver-inspired 3D-device to detoxify blood

By PTI | 9 May, 2014, 02.04PM IST

Read More on > University of California | Scenario Analysis | Risk | Researchers | Record Date | Net Worth | Liver

Ad by Google

Dividend Paying Stocks

www.wisdomtree.com/Dividend-Paying - Access America's Largest Dividend Paying Stocks in 1 ETF - Find Out Now

WASHINGTON: Researchers have developed a 3D-printed device inspired by the liver that can remove dangerous toxins from the blood.

Nanoengineers at the University of California, San Diego, developed the device, which is designed to be used outside the body - much like dialysis.

The device uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections.

Nanoparticles have already been shown to be effective at neutralising pore-forming toxins in the blood, but if those nanoparticles cannot be effectively digested, they can accumulate in the liver creating a risk of secondary poisoning, especially among patients who are already at risk of liver failure.

To solve this problem, a research team led by nanoengineering professor Shaochen Chen created a 3D-printed hydrogel matrix to house nanoparticles, forming a device that mimics the function of the liver by sensing, attracting and capturing toxins routed from the blood.
The device, which is in the proof-of-concept stage, mimics the structure of the liver but has a larger surface area designed to efficiently attract and trap toxins within the device.

In an in vitro study, the device completely neutralised pore-forming toxins.

"One unique feature of this device is that it turns red when the toxins are captured," said the co-first author, Xin Qu, who is a postdoctoral researcher working in Chen's laboratory.

"The concept of using 3D printing to encapsulate functional nanoparticles in a biocompatible hydrogel is novel," said Chen.

"This will inspire many new designs for detoxification techniques since 3D printing allows user-specific or site-specific manufacturing of highly functional products," Chen said.

The findings were published in the journal Nature Communications.